Description: Binary relation form of the successor map, general version. (Contributed by Peter Mazsa, 6-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brsucmap | |- ( ( M e. V /\ N e. W ) -> ( M SucMap N <-> suc M = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq | |- ( m = M -> suc m = suc M ) |
|
| 2 | id | |- ( n = N -> n = N ) |
|
| 3 | 1 2 | eqeqan12d | |- ( ( m = M /\ n = N ) -> ( suc m = n <-> suc M = N ) ) |
| 4 | df-sucmap | |- SucMap = { <. m , n >. | suc m = n } |
|
| 5 | 3 4 | brabga | |- ( ( M e. V /\ N e. W ) -> ( M SucMap N <-> suc M = N ) ) |