Description: Binary relation form of the successor map, general version. (Contributed by Peter Mazsa, 6-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brsucmap | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq | ⊢ ( 𝑚 = 𝑀 → suc 𝑚 = suc 𝑀 ) | |
| 2 | id | ⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) | |
| 3 | 1 2 | eqeqan12d | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑛 = 𝑁 ) → ( suc 𝑚 = 𝑛 ↔ suc 𝑀 = 𝑁 ) ) |
| 4 | df-sucmap | ⊢ SucMap = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } | |
| 5 | 3 4 | brabga | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑊 ) → ( 𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁 ) ) |