Metamath Proof Explorer


Theorem brsucmap

Description: Binary relation form of the successor map, general version. (Contributed by Peter Mazsa, 6-Jan-2026)

Ref Expression
Assertion brsucmap ( ( 𝑀𝑉𝑁𝑊 ) → ( 𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁 ) )

Proof

Step Hyp Ref Expression
1 suceq ( 𝑚 = 𝑀 → suc 𝑚 = suc 𝑀 )
2 id ( 𝑛 = 𝑁𝑛 = 𝑁 )
3 1 2 eqeqan12d ( ( 𝑚 = 𝑀𝑛 = 𝑁 ) → ( suc 𝑚 = 𝑛 ↔ suc 𝑀 = 𝑁 ) )
4 df-sucmap SucMap = { ⟨ 𝑚 , 𝑛 ⟩ ∣ suc 𝑚 = 𝑛 }
5 3 4 brabga ( ( 𝑀𝑉𝑁𝑊 ) → ( 𝑀 SucMap 𝑁 ↔ suc 𝑀 = 𝑁 ) )