Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tglngval.p | |- P = ( Base ` G ) |
|
| tglngval.l | |- L = ( LineG ` G ) |
||
| tglngval.i | |- I = ( Itv ` G ) |
||
| tglngval.g | |- ( ph -> G e. TarskiG ) |
||
| tglngval.x | |- ( ph -> X e. P ) |
||
| tglngval.y | |- ( ph -> Y e. P ) |
||
| tgcolg.z | |- ( ph -> Z e. P ) |
||
| btwncolg1.z | |- ( ph -> Z e. ( X I Y ) ) |
||
| Assertion | btwncolg1 | |- ( ph -> ( Z e. ( X L Y ) \/ X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | |- P = ( Base ` G ) |
|
| 2 | tglngval.l | |- L = ( LineG ` G ) |
|
| 3 | tglngval.i | |- I = ( Itv ` G ) |
|
| 4 | tglngval.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tglngval.x | |- ( ph -> X e. P ) |
|
| 6 | tglngval.y | |- ( ph -> Y e. P ) |
|
| 7 | tgcolg.z | |- ( ph -> Z e. P ) |
|
| 8 | btwncolg1.z | |- ( ph -> Z e. ( X I Y ) ) |
|
| 9 | 8 | 3mix1d | |- ( ph -> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) |
| 10 | 1 2 3 4 5 6 7 | tgcolg | |- ( ph -> ( ( Z e. ( X L Y ) \/ X = Y ) <-> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) ) |
| 11 | 9 10 | mpbird | |- ( ph -> ( Z e. ( X L Y ) \/ X = Y ) ) |