| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
|- P = ( Base ` G ) |
| 2 |
|
tglngval.l |
|- L = ( LineG ` G ) |
| 3 |
|
tglngval.i |
|- I = ( Itv ` G ) |
| 4 |
|
tglngval.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tglngval.x |
|- ( ph -> X e. P ) |
| 6 |
|
tglngval.y |
|- ( ph -> Y e. P ) |
| 7 |
|
tgcolg.z |
|- ( ph -> Z e. P ) |
| 8 |
|
animorr |
|- ( ( ph /\ X = Y ) -> ( Z e. ( X L Y ) \/ X = Y ) ) |
| 9 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ X = Y ) -> G e. TarskiG ) |
| 11 |
7
|
adantr |
|- ( ( ph /\ X = Y ) -> Z e. P ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ X = Y ) -> X e. P ) |
| 13 |
1 9 3 10 11 12
|
tgbtwntriv2 |
|- ( ( ph /\ X = Y ) -> X e. ( Z I X ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ X = Y ) -> X = Y ) |
| 15 |
14
|
oveq2d |
|- ( ( ph /\ X = Y ) -> ( Z I X ) = ( Z I Y ) ) |
| 16 |
13 15
|
eleqtrd |
|- ( ( ph /\ X = Y ) -> X e. ( Z I Y ) ) |
| 17 |
16
|
3mix2d |
|- ( ( ph /\ X = Y ) -> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) |
| 18 |
8 17
|
2thd |
|- ( ( ph /\ X = Y ) -> ( ( Z e. ( X L Y ) \/ X = Y ) <-> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) ) |
| 19 |
|
simpr |
|- ( ( ph /\ X =/= Y ) -> X =/= Y ) |
| 20 |
19
|
neneqd |
|- ( ( ph /\ X =/= Y ) -> -. X = Y ) |
| 21 |
|
biorf |
|- ( -. X = Y -> ( Z e. ( X L Y ) <-> ( X = Y \/ Z e. ( X L Y ) ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( ph /\ X =/= Y ) -> ( Z e. ( X L Y ) <-> ( X = Y \/ Z e. ( X L Y ) ) ) ) |
| 23 |
|
orcom |
|- ( ( X = Y \/ Z e. ( X L Y ) ) <-> ( Z e. ( X L Y ) \/ X = Y ) ) |
| 24 |
22 23
|
bitrdi |
|- ( ( ph /\ X =/= Y ) -> ( Z e. ( X L Y ) <-> ( Z e. ( X L Y ) \/ X = Y ) ) ) |
| 25 |
4
|
adantr |
|- ( ( ph /\ X =/= Y ) -> G e. TarskiG ) |
| 26 |
5
|
adantr |
|- ( ( ph /\ X =/= Y ) -> X e. P ) |
| 27 |
6
|
adantr |
|- ( ( ph /\ X =/= Y ) -> Y e. P ) |
| 28 |
7
|
adantr |
|- ( ( ph /\ X =/= Y ) -> Z e. P ) |
| 29 |
1 2 3 25 26 27 19 28
|
tgellng |
|- ( ( ph /\ X =/= Y ) -> ( Z e. ( X L Y ) <-> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) ) |
| 30 |
24 29
|
bitr3d |
|- ( ( ph /\ X =/= Y ) -> ( ( Z e. ( X L Y ) \/ X = Y ) <-> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) ) |
| 31 |
18 30
|
pm2.61dane |
|- ( ph -> ( ( Z e. ( X L Y ) \/ X = Y ) <-> ( Z e. ( X I Y ) \/ X e. ( Z I Y ) \/ Y e. ( X I Z ) ) ) ) |