| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
| 2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
| 3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
| 4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgbtwntriv2.1 |
|- ( ph -> A e. P ) |
| 6 |
|
tgbtwntriv2.2 |
|- ( ph -> B e. P ) |
| 7 |
|
simprl |
|- ( ( ( ph /\ x e. P ) /\ ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) -> B e. ( A I x ) ) |
| 8 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> G e. TarskiG ) |
| 9 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> B e. P ) |
| 10 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> x e. P ) |
| 11 |
|
simpr |
|- ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> ( B .- x ) = ( B .- B ) ) |
| 12 |
1 2 3 8 9 10 9 11
|
axtgcgrid |
|- ( ( ( ph /\ x e. P ) /\ ( B .- x ) = ( B .- B ) ) -> B = x ) |
| 13 |
12
|
adantrl |
|- ( ( ( ph /\ x e. P ) /\ ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) -> B = x ) |
| 14 |
13
|
oveq2d |
|- ( ( ( ph /\ x e. P ) /\ ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) -> ( A I B ) = ( A I x ) ) |
| 15 |
7 14
|
eleqtrrd |
|- ( ( ( ph /\ x e. P ) /\ ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) -> B e. ( A I B ) ) |
| 16 |
1 2 3 4 5 6 6 6
|
axtgsegcon |
|- ( ph -> E. x e. P ( B e. ( A I x ) /\ ( B .- x ) = ( B .- B ) ) ) |
| 17 |
15 16
|
r19.29a |
|- ( ph -> B e. ( A I B ) ) |