Metamath Proof Explorer


Theorem tgbtwntriv2

Description: Betweenness always holds for the second endpoint. Theorem 3.1 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwntriv2.1 φAP
tgbtwntriv2.2 φBP
Assertion tgbtwntriv2 φBAIB

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwntriv2.1 φAP
6 tgbtwntriv2.2 φBP
7 simprl φxPBAIxB-˙x=B-˙BBAIx
8 4 ad2antrr φxPB-˙x=B-˙BG𝒢Tarski
9 6 ad2antrr φxPB-˙x=B-˙BBP
10 simplr φxPB-˙x=B-˙BxP
11 simpr φxPB-˙x=B-˙BB-˙x=B-˙B
12 1 2 3 8 9 10 9 11 axtgcgrid φxPB-˙x=B-˙BB=x
13 12 adantrl φxPBAIxB-˙x=B-˙BB=x
14 13 oveq2d φxPBAIxB-˙x=B-˙BAIB=AIx
15 7 14 eleqtrrd φxPBAIxB-˙x=B-˙BBAIB
16 1 2 3 4 5 6 6 6 axtgsegcon φxPBAIxB-˙x=B-˙B
17 15 16 r19.29a φBAIB