Metamath Proof Explorer


Theorem axtgcgrid

Description: Axiom of identity of congruence, Axiom A3 of Schwabhauser p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses axtrkg.p P=BaseG
axtrkg.d -˙=distG
axtrkg.i I=ItvG
axtrkg.g φG𝒢Tarski
axtgcgrid.1 φXP
axtgcgrid.2 φYP
axtgcgrid.3 φZP
axtgcgrid.4 φX-˙Y=Z-˙Z
Assertion axtgcgrid φX=Y

Proof

Step Hyp Ref Expression
1 axtrkg.p P=BaseG
2 axtrkg.d -˙=distG
3 axtrkg.i I=ItvG
4 axtrkg.g φG𝒢Tarski
5 axtgcgrid.1 φXP
6 axtgcgrid.2 φYP
7 axtgcgrid.3 φZP
8 axtgcgrid.4 φX-˙Y=Z-˙Z
9 df-trkg 𝒢Tarski=𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
10 inss1 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiC𝒢TarskiB
11 inss1 𝒢TarskiC𝒢TarskiB𝒢TarskiC
12 10 11 sstri 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiC
13 9 12 eqsstri 𝒢Tarski𝒢TarskiC
14 13 4 sselid φG𝒢TarskiC
15 1 2 3 istrkgc G𝒢TarskiCGVxPyPx-˙y=y-˙xxPyPzPx-˙y=z-˙zx=y
16 15 simprbi G𝒢TarskiCxPyPx-˙y=y-˙xxPyPzPx-˙y=z-˙zx=y
17 16 simprd G𝒢TarskiCxPyPzPx-˙y=z-˙zx=y
18 14 17 syl φxPyPzPx-˙y=z-˙zx=y
19 oveq1 x=Xx-˙y=X-˙y
20 19 eqeq1d x=Xx-˙y=z-˙zX-˙y=z-˙z
21 eqeq1 x=Xx=yX=y
22 20 21 imbi12d x=Xx-˙y=z-˙zx=yX-˙y=z-˙zX=y
23 oveq2 y=YX-˙y=X-˙Y
24 23 eqeq1d y=YX-˙y=z-˙zX-˙Y=z-˙z
25 eqeq2 y=YX=yX=Y
26 24 25 imbi12d y=YX-˙y=z-˙zX=yX-˙Y=z-˙zX=Y
27 id z=Zz=Z
28 27 27 oveq12d z=Zz-˙z=Z-˙Z
29 28 eqeq2d z=ZX-˙Y=z-˙zX-˙Y=Z-˙Z
30 29 imbi1d z=ZX-˙Y=z-˙zX=YX-˙Y=Z-˙ZX=Y
31 22 26 30 rspc3v XPYPZPxPyPzPx-˙y=z-˙zx=yX-˙Y=Z-˙ZX=Y
32 5 6 7 31 syl3anc φxPyPzPx-˙y=z-˙zx=yX-˙Y=Z-˙ZX=Y
33 18 8 32 mp2d φX=Y