Metamath Proof Explorer


Definition df-trkg

Description: Define the class of Tarski geometries. A Tarski geometry is a set of points, equipped with a betweenness relation (denoting that a point lies on a line segment between two other points) and a congruence relation (denoting equality of line segment lengths).

Here, we are using the following:

With this definition, the axiom A2 is actually equivalent to the transitivity of equality, eqtrd .

Tarski originally had more axioms, but later reduced his list to 11:

Our definition is split into 5 parts:

So our definition of a Tarskian Geometry includes the 3 axioms for the quaternary congruence relation (A1, A2, A3), the 3 axioms for the ternary betweenness relation (A6, A7, A11), and the 2 axioms of compatibility of the congruence and the betweenness relations (A4,A5).

It does not include Euclid's axiom A10, nor the 2-dimensional axioms A8 (Lower dimension axiom) and A9 (Upper dimension axiom) so the number of dimensions of the geometry it formalizes is not constrained.

Considering A2 as one of the 3 axioms for the quaternary congruence relation is somewhat conventional, because the transitivity of the congruence relation is automatically given by our choice to take the distance as this congruence relation in our definition of Tarski geometries. (Contributed by Thierry Arnoux, 24-Aug-2017) (Revised by Thierry Arnoux, 27-Apr-2019)

Ref Expression
Assertion df-trkg 𝒢Tarski=𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstrkg class𝒢Tarski
1 cstrkgc class𝒢TarskiC
2 cstrkgb class𝒢TarskiB
3 1 2 cin class𝒢TarskiC𝒢TarskiB
4 cstrkgcb class𝒢TarskiCB
5 vf setvarf
6 cbs classBase
7 5 cv setvarf
8 7 6 cfv classBasef
9 vp setvarp
10 citv classItv
11 7 10 cfv classItvf
12 vi setvari
13 clng classLine𝒢
14 7 13 cfv classLine𝒢f
15 vx setvarx
16 9 cv setvarp
17 vy setvary
18 15 cv setvarx
19 18 csn classx
20 16 19 cdif classpx
21 vz setvarz
22 21 cv setvarz
23 12 cv setvari
24 17 cv setvary
25 18 24 23 co classxiy
26 22 25 wcel wffzxiy
27 22 24 23 co classziy
28 18 27 wcel wffxziy
29 18 22 23 co classxiz
30 24 29 wcel wffyxiz
31 26 28 30 w3o wffzxiyxziyyxiz
32 31 21 16 crab classzp|zxiyxziyyxiz
33 15 17 16 20 32 cmpo classxp,ypxzp|zxiyxziyyxiz
34 14 33 wceq wffLine𝒢f=xp,ypxzp|zxiyxziyyxiz
35 34 12 11 wsbc wff[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
36 35 9 8 wsbc wff[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
37 36 5 cab classf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
38 4 37 cin class𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
39 3 38 cin class𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
40 0 39 wceq wff𝒢Tarski=𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz