Metamath Proof Explorer


Theorem axtgcgrid

Description: Axiom of identity of congruence, Axiom A3 of Schwabhauser p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses axtrkg.p 𝑃 = ( Base ‘ 𝐺 )
axtrkg.d = ( dist ‘ 𝐺 )
axtrkg.i 𝐼 = ( Itv ‘ 𝐺 )
axtrkg.g ( 𝜑𝐺 ∈ TarskiG )
axtgcgrid.1 ( 𝜑𝑋𝑃 )
axtgcgrid.2 ( 𝜑𝑌𝑃 )
axtgcgrid.3 ( 𝜑𝑍𝑃 )
axtgcgrid.4 ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑍 𝑍 ) )
Assertion axtgcgrid ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 axtrkg.p 𝑃 = ( Base ‘ 𝐺 )
2 axtrkg.d = ( dist ‘ 𝐺 )
3 axtrkg.i 𝐼 = ( Itv ‘ 𝐺 )
4 axtrkg.g ( 𝜑𝐺 ∈ TarskiG )
5 axtgcgrid.1 ( 𝜑𝑋𝑃 )
6 axtgcgrid.2 ( 𝜑𝑌𝑃 )
7 axtgcgrid.3 ( 𝜑𝑍𝑃 )
8 axtgcgrid.4 ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑍 𝑍 ) )
9 df-trkg TarskiG = ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) )
10 inss1 ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ⊆ ( TarskiGC ∩ TarskiGB )
11 inss1 ( TarskiGC ∩ TarskiGB ) ⊆ TarskiGC
12 10 11 sstri ( ( TarskiGC ∩ TarskiGB ) ∩ ( TarskiGCB ∩ { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( LineG ‘ 𝑓 ) = ( 𝑥𝑝 , 𝑦 ∈ ( 𝑝 ∖ { 𝑥 } ) ↦ { 𝑧𝑝 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) } ) ) ⊆ TarskiGC
13 9 12 eqsstri TarskiG ⊆ TarskiGC
14 13 4 sseldi ( 𝜑𝐺 ∈ TarskiGC )
15 1 2 3 istrkgc ( 𝐺 ∈ TarskiGC ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) ) )
16 15 simprbi ( 𝐺 ∈ TarskiGC → ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 𝑦 ) = ( 𝑦 𝑥 ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ) )
17 16 simprd ( 𝐺 ∈ TarskiGC → ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) )
18 14 17 syl ( 𝜑 → ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) )
19 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑦 ) = ( 𝑋 𝑦 ) )
20 19 eqeq1d ( 𝑥 = 𝑋 → ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) ↔ ( 𝑋 𝑦 ) = ( 𝑧 𝑧 ) ) )
21 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦𝑋 = 𝑦 ) )
22 20 21 imbi12d ( 𝑥 = 𝑋 → ( ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑋 𝑦 ) = ( 𝑧 𝑧 ) → 𝑋 = 𝑦 ) ) )
23 oveq2 ( 𝑦 = 𝑌 → ( 𝑋 𝑦 ) = ( 𝑋 𝑌 ) )
24 23 eqeq1d ( 𝑦 = 𝑌 → ( ( 𝑋 𝑦 ) = ( 𝑧 𝑧 ) ↔ ( 𝑋 𝑌 ) = ( 𝑧 𝑧 ) ) )
25 eqeq2 ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦𝑋 = 𝑌 ) )
26 24 25 imbi12d ( 𝑦 = 𝑌 → ( ( ( 𝑋 𝑦 ) = ( 𝑧 𝑧 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝑋 𝑌 ) = ( 𝑧 𝑧 ) → 𝑋 = 𝑌 ) ) )
27 id ( 𝑧 = 𝑍𝑧 = 𝑍 )
28 27 27 oveq12d ( 𝑧 = 𝑍 → ( 𝑧 𝑧 ) = ( 𝑍 𝑍 ) )
29 28 eqeq2d ( 𝑧 = 𝑍 → ( ( 𝑋 𝑌 ) = ( 𝑧 𝑧 ) ↔ ( 𝑋 𝑌 ) = ( 𝑍 𝑍 ) ) )
30 29 imbi1d ( 𝑧 = 𝑍 → ( ( ( 𝑋 𝑌 ) = ( 𝑧 𝑧 ) → 𝑋 = 𝑌 ) ↔ ( ( 𝑋 𝑌 ) = ( 𝑍 𝑍 ) → 𝑋 = 𝑌 ) ) )
31 22 26 30 rspc3v ( ( 𝑋𝑃𝑌𝑃𝑍𝑃 ) → ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) → ( ( 𝑋 𝑌 ) = ( 𝑍 𝑍 ) → 𝑋 = 𝑌 ) ) )
32 5 6 7 31 syl3anc ( 𝜑 → ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃 ( ( 𝑥 𝑦 ) = ( 𝑧 𝑧 ) → 𝑥 = 𝑦 ) → ( ( 𝑋 𝑌 ) = ( 𝑍 𝑍 ) → 𝑋 = 𝑌 ) ) )
33 18 8 32 mp2d ( 𝜑𝑋 = 𝑌 )