Metamath Proof Explorer


Theorem tgbtwncom

Description: Betweenness commutes. Theorem 3.2 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwntriv2.1 φAP
tgbtwntriv2.2 φBP
tgbtwncom.3 φCP
tgbtwncom.4 φBAIC
Assertion tgbtwncom φBCIA

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwntriv2.1 φAP
6 tgbtwntriv2.2 φBP
7 tgbtwncom.3 φCP
8 tgbtwncom.4 φBAIC
9 4 ad2antrr φxPxBIBxCIAG𝒢Tarski
10 6 ad2antrr φxPxBIBxCIABP
11 simplr φxPxBIBxCIAxP
12 simprl φxPxBIBxCIAxBIB
13 1 2 3 9 10 11 12 axtgbtwnid φxPxBIBxCIAB=x
14 simprr φxPxBIBxCIAxCIA
15 13 14 eqeltrd φxPxBIBxCIABCIA
16 1 2 3 4 6 7 tgbtwntriv2 φCBIC
17 1 2 3 4 5 6 7 6 7 8 16 axtgpasch φxPxBIBxCIA
18 15 17 r19.29a φBCIA