Metamath Proof Explorer


Theorem tgbtwncomb

Description: Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwntriv2.1 φAP
tgbtwntriv2.2 φBP
tgbtwncomb.3 φCP
Assertion tgbtwncomb φBAICBCIA

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwntriv2.1 φAP
6 tgbtwntriv2.2 φBP
7 tgbtwncomb.3 φCP
8 4 adantr φBAICG𝒢Tarski
9 5 adantr φBAICAP
10 6 adantr φBAICBP
11 7 adantr φBAICCP
12 simpr φBAICBAIC
13 1 2 3 8 9 10 11 12 tgbtwncom φBAICBCIA
14 4 adantr φBCIAG𝒢Tarski
15 7 adantr φBCIACP
16 6 adantr φBCIABP
17 5 adantr φBCIAAP
18 simpr φBCIABCIA
19 1 2 3 14 15 16 17 18 tgbtwncom φBCIABAIC
20 13 19 impbida φBAICBCIA