Metamath Proof Explorer


Theorem tgbtwncomb

Description: Betweenness commutes, biconditional version. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgbtwntriv2.1
|- ( ph -> A e. P )
tgbtwntriv2.2
|- ( ph -> B e. P )
tgbtwncomb.3
|- ( ph -> C e. P )
Assertion tgbtwncomb
|- ( ph -> ( B e. ( A I C ) <-> B e. ( C I A ) ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwntriv2.1
 |-  ( ph -> A e. P )
6 tgbtwntriv2.2
 |-  ( ph -> B e. P )
7 tgbtwncomb.3
 |-  ( ph -> C e. P )
8 4 adantr
 |-  ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG )
9 5 adantr
 |-  ( ( ph /\ B e. ( A I C ) ) -> A e. P )
10 6 adantr
 |-  ( ( ph /\ B e. ( A I C ) ) -> B e. P )
11 7 adantr
 |-  ( ( ph /\ B e. ( A I C ) ) -> C e. P )
12 simpr
 |-  ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) )
13 1 2 3 8 9 10 11 12 tgbtwncom
 |-  ( ( ph /\ B e. ( A I C ) ) -> B e. ( C I A ) )
14 4 adantr
 |-  ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG )
15 7 adantr
 |-  ( ( ph /\ B e. ( C I A ) ) -> C e. P )
16 6 adantr
 |-  ( ( ph /\ B e. ( C I A ) ) -> B e. P )
17 5 adantr
 |-  ( ( ph /\ B e. ( C I A ) ) -> A e. P )
18 simpr
 |-  ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) )
19 1 2 3 14 15 16 17 18 tgbtwncom
 |-  ( ( ph /\ B e. ( C I A ) ) -> B e. ( A I C ) )
20 13 19 impbida
 |-  ( ph -> ( B e. ( A I C ) <-> B e. ( C I A ) ) )