| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
| 2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
| 3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
| 4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgbtwntriv2.1 |
|- ( ph -> A e. P ) |
| 6 |
|
tgbtwntriv2.2 |
|- ( ph -> B e. P ) |
| 7 |
|
tgbtwncom.3 |
|- ( ph -> C e. P ) |
| 8 |
|
tgbtwncom.4 |
|- ( ph -> B e. ( A I C ) ) |
| 9 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> G e. TarskiG ) |
| 10 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B e. P ) |
| 11 |
|
simplr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. P ) |
| 12 |
|
simprl |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. ( B I B ) ) |
| 13 |
1 2 3 9 10 11 12
|
axtgbtwnid |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B = x ) |
| 14 |
|
simprr |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. ( C I A ) ) |
| 15 |
13 14
|
eqeltrd |
|- ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B e. ( C I A ) ) |
| 16 |
1 2 3 4 6 7
|
tgbtwntriv2 |
|- ( ph -> C e. ( B I C ) ) |
| 17 |
1 2 3 4 5 6 7 6 7 8 16
|
axtgpasch |
|- ( ph -> E. x e. P ( x e. ( B I B ) /\ x e. ( C I A ) ) ) |
| 18 |
15 17
|
r19.29a |
|- ( ph -> B e. ( C I A ) ) |