Metamath Proof Explorer


Theorem tgbtwncom

Description: Betweenness commutes. Theorem 3.2 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgbtwntriv2.1
|- ( ph -> A e. P )
tgbtwntriv2.2
|- ( ph -> B e. P )
tgbtwncom.3
|- ( ph -> C e. P )
tgbtwncom.4
|- ( ph -> B e. ( A I C ) )
Assertion tgbtwncom
|- ( ph -> B e. ( C I A ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwntriv2.1
 |-  ( ph -> A e. P )
6 tgbtwntriv2.2
 |-  ( ph -> B e. P )
7 tgbtwncom.3
 |-  ( ph -> C e. P )
8 tgbtwncom.4
 |-  ( ph -> B e. ( A I C ) )
9 4 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> G e. TarskiG )
10 6 ad2antrr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B e. P )
11 simplr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. P )
12 simprl
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. ( B I B ) )
13 1 2 3 9 10 11 12 axtgbtwnid
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B = x )
14 simprr
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> x e. ( C I A ) )
15 13 14 eqeltrd
 |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( B I B ) /\ x e. ( C I A ) ) ) -> B e. ( C I A ) )
16 1 2 3 4 6 7 tgbtwntriv2
 |-  ( ph -> C e. ( B I C ) )
17 1 2 3 4 5 6 7 6 7 8 16 axtgpasch
 |-  ( ph -> E. x e. P ( x e. ( B I B ) /\ x e. ( C I A ) ) )
18 15 17 r19.29a
 |-  ( ph -> B e. ( C I A ) )