| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
|- P = ( Base ` G ) |
| 2 |
|
tkgeom.d |
|- .- = ( dist ` G ) |
| 3 |
|
tkgeom.i |
|- I = ( Itv ` G ) |
| 4 |
|
tkgeom.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgbtwntriv2.1 |
|- ( ph -> A e. P ) |
| 6 |
|
tgbtwntriv2.2 |
|- ( ph -> B e. P ) |
| 7 |
|
tgbtwncomb.3 |
|- ( ph -> C e. P ) |
| 8 |
|
tgbtwnne.1 |
|- ( ph -> B e. ( A I C ) ) |
| 9 |
|
tgbtwnne.2 |
|- ( ph -> B =/= A ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ A = C ) -> G e. TarskiG ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ A = C ) -> A e. P ) |
| 12 |
6
|
adantr |
|- ( ( ph /\ A = C ) -> B e. P ) |
| 13 |
8
|
adantr |
|- ( ( ph /\ A = C ) -> B e. ( A I C ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ A = C ) -> A = C ) |
| 15 |
14
|
oveq2d |
|- ( ( ph /\ A = C ) -> ( A I A ) = ( A I C ) ) |
| 16 |
13 15
|
eleqtrrd |
|- ( ( ph /\ A = C ) -> B e. ( A I A ) ) |
| 17 |
1 2 3 10 11 12 16
|
axtgbtwnid |
|- ( ( ph /\ A = C ) -> A = B ) |
| 18 |
17
|
eqcomd |
|- ( ( ph /\ A = C ) -> B = A ) |
| 19 |
9
|
adantr |
|- ( ( ph /\ A = C ) -> B =/= A ) |
| 20 |
19
|
neneqd |
|- ( ( ph /\ A = C ) -> -. B = A ) |
| 21 |
18 20
|
pm2.65da |
|- ( ph -> -. A = C ) |
| 22 |
21
|
neqned |
|- ( ph -> A =/= C ) |