Metamath Proof Explorer


Theorem tgbtwnne

Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgbtwntriv2.1
|- ( ph -> A e. P )
tgbtwntriv2.2
|- ( ph -> B e. P )
tgbtwncomb.3
|- ( ph -> C e. P )
tgbtwnne.1
|- ( ph -> B e. ( A I C ) )
tgbtwnne.2
|- ( ph -> B =/= A )
Assertion tgbtwnne
|- ( ph -> A =/= C )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwntriv2.1
 |-  ( ph -> A e. P )
6 tgbtwntriv2.2
 |-  ( ph -> B e. P )
7 tgbtwncomb.3
 |-  ( ph -> C e. P )
8 tgbtwnne.1
 |-  ( ph -> B e. ( A I C ) )
9 tgbtwnne.2
 |-  ( ph -> B =/= A )
10 4 adantr
 |-  ( ( ph /\ A = C ) -> G e. TarskiG )
11 5 adantr
 |-  ( ( ph /\ A = C ) -> A e. P )
12 6 adantr
 |-  ( ( ph /\ A = C ) -> B e. P )
13 8 adantr
 |-  ( ( ph /\ A = C ) -> B e. ( A I C ) )
14 simpr
 |-  ( ( ph /\ A = C ) -> A = C )
15 14 oveq2d
 |-  ( ( ph /\ A = C ) -> ( A I A ) = ( A I C ) )
16 13 15 eleqtrrd
 |-  ( ( ph /\ A = C ) -> B e. ( A I A ) )
17 1 2 3 10 11 12 16 axtgbtwnid
 |-  ( ( ph /\ A = C ) -> A = B )
18 17 eqcomd
 |-  ( ( ph /\ A = C ) -> B = A )
19 9 adantr
 |-  ( ( ph /\ A = C ) -> B =/= A )
20 19 neneqd
 |-  ( ( ph /\ A = C ) -> -. B = A )
21 18 20 pm2.65da
 |-  ( ph -> -. A = C )
22 21 neqned
 |-  ( ph -> A =/= C )