Metamath Proof Explorer


Theorem tgbtwnne

Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwntriv2.1 φAP
tgbtwntriv2.2 φBP
tgbtwncomb.3 φCP
tgbtwnne.1 φBAIC
tgbtwnne.2 φBA
Assertion tgbtwnne φAC

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwntriv2.1 φAP
6 tgbtwntriv2.2 φBP
7 tgbtwncomb.3 φCP
8 tgbtwnne.1 φBAIC
9 tgbtwnne.2 φBA
10 4 adantr φA=CG𝒢Tarski
11 5 adantr φA=CAP
12 6 adantr φA=CBP
13 8 adantr φA=CBAIC
14 simpr φA=CA=C
15 14 oveq2d φA=CAIA=AIC
16 13 15 eleqtrrd φA=CBAIA
17 1 2 3 10 11 12 16 axtgbtwnid φA=CA=B
18 17 eqcomd φA=CB=A
19 9 adantr φA=CBA
20 19 neneqd φA=C¬B=A
21 18 20 pm2.65da φ¬A=C
22 21 neqned φAC