Metamath Proof Explorer


Theorem tgbtwnne

Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwntriv2.1 ( 𝜑𝐴𝑃 )
tgbtwntriv2.2 ( 𝜑𝐵𝑃 )
tgbtwncomb.3 ( 𝜑𝐶𝑃 )
tgbtwnne.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
tgbtwnne.2 ( 𝜑𝐵𝐴 )
Assertion tgbtwnne ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwntriv2.1 ( 𝜑𝐴𝑃 )
6 tgbtwntriv2.2 ( 𝜑𝐵𝑃 )
7 tgbtwncomb.3 ( 𝜑𝐶𝑃 )
8 tgbtwnne.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
9 tgbtwnne.2 ( 𝜑𝐵𝐴 )
10 4 adantr ( ( 𝜑𝐴 = 𝐶 ) → 𝐺 ∈ TarskiG )
11 5 adantr ( ( 𝜑𝐴 = 𝐶 ) → 𝐴𝑃 )
12 6 adantr ( ( 𝜑𝐴 = 𝐶 ) → 𝐵𝑃 )
13 8 adantr ( ( 𝜑𝐴 = 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
14 simpr ( ( 𝜑𝐴 = 𝐶 ) → 𝐴 = 𝐶 )
15 14 oveq2d ( ( 𝜑𝐴 = 𝐶 ) → ( 𝐴 𝐼 𝐴 ) = ( 𝐴 𝐼 𝐶 ) )
16 13 15 eleqtrrd ( ( 𝜑𝐴 = 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐴 ) )
17 1 2 3 10 11 12 16 axtgbtwnid ( ( 𝜑𝐴 = 𝐶 ) → 𝐴 = 𝐵 )
18 17 eqcomd ( ( 𝜑𝐴 = 𝐶 ) → 𝐵 = 𝐴 )
19 9 adantr ( ( 𝜑𝐴 = 𝐶 ) → 𝐵𝐴 )
20 19 neneqd ( ( 𝜑𝐴 = 𝐶 ) → ¬ 𝐵 = 𝐴 )
21 18 20 pm2.65da ( 𝜑 → ¬ 𝐴 = 𝐶 )
22 21 neqned ( 𝜑𝐴𝐶 )