| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgbtwntriv2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgbtwntriv2.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgbtwncomb.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgbtwnne.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 9 |
|
tgbtwnne.2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 ∈ 𝑃 ) |
| 12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐵 ∈ 𝑃 ) |
| 13 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 = 𝐶 ) |
| 15 |
14
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ( 𝐴 𝐼 𝐴 ) = ( 𝐴 𝐼 𝐶 ) ) |
| 16 |
13 15
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐴 ) ) |
| 17 |
1 2 3 10 11 12 16
|
axtgbtwnid |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐴 = 𝐵 ) |
| 18 |
17
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐵 = 𝐴 ) |
| 19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → 𝐵 ≠ 𝐴 ) |
| 20 |
19
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐶 ) → ¬ 𝐵 = 𝐴 ) |
| 21 |
18 20
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐴 = 𝐶 ) |
| 22 |
21
|
neqned |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |