Metamath Proof Explorer
Description: Betweenness always holds for the first endpoint. Theorem 3.3 of
Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
|
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
tgbtwntriv2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
tgbtwntriv2.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
|
Assertion |
tgbtwntriv1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 𝐼 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgbtwntriv2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgbtwntriv2.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
1 2 3 4 6 5
|
tgbtwntriv2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 8 |
1 2 3 4 6 5 5 7
|
tgbtwncom |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 𝐼 𝐵 ) ) |