Description: Betweenness always holds for the first endpoint. Theorem 3.3 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tkgeom.p | |- P = ( Base ` G ) |
|
| tkgeom.d | |- .- = ( dist ` G ) |
||
| tkgeom.i | |- I = ( Itv ` G ) |
||
| tkgeom.g | |- ( ph -> G e. TarskiG ) |
||
| tgbtwntriv2.1 | |- ( ph -> A e. P ) |
||
| tgbtwntriv2.2 | |- ( ph -> B e. P ) |
||
| Assertion | tgbtwntriv1 | |- ( ph -> A e. ( A I B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | |- P = ( Base ` G ) |
|
| 2 | tkgeom.d | |- .- = ( dist ` G ) |
|
| 3 | tkgeom.i | |- I = ( Itv ` G ) |
|
| 4 | tkgeom.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tgbtwntriv2.1 | |- ( ph -> A e. P ) |
|
| 6 | tgbtwntriv2.2 | |- ( ph -> B e. P ) |
|
| 7 | 1 2 3 4 6 5 | tgbtwntriv2 | |- ( ph -> A e. ( B I A ) ) |
| 8 | 1 2 3 4 6 5 5 7 | tgbtwncom | |- ( ph -> A e. ( A I B ) ) |