| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tkgeom.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tkgeom.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | tkgeom.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tkgeom.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tgbtwnswapid.1 |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | tgbtwnswapid.2 |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | tgbtwnswapid.3 |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | tgbtwnswapid.4 |  |-  ( ph -> A e. ( B I C ) ) | 
						
							| 9 |  | tgbtwnswapid.5 |  |-  ( ph -> B e. ( A I C ) ) | 
						
							| 10 | 4 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> G e. TarskiG ) | 
						
							| 11 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A e. P ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. P ) | 
						
							| 13 |  | simprl |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. ( A I A ) ) | 
						
							| 14 | 1 2 3 10 11 12 13 | axtgbtwnid |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A = x ) | 
						
							| 15 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> B e. P ) | 
						
							| 16 |  | simprr |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> x e. ( B I B ) ) | 
						
							| 17 | 1 2 3 10 15 12 16 | axtgbtwnid |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> B = x ) | 
						
							| 18 | 14 17 | eqtr4d |  |-  ( ( ( ph /\ x e. P ) /\ ( x e. ( A I A ) /\ x e. ( B I B ) ) ) -> A = B ) | 
						
							| 19 | 1 2 3 4 6 5 7 5 6 8 9 | axtgpasch |  |-  ( ph -> E. x e. P ( x e. ( A I A ) /\ x e. ( B I B ) ) ) | 
						
							| 20 | 18 19 | r19.29a |  |-  ( ph -> A = B ) |