Metamath Proof Explorer


Theorem tgbtwnswapid

Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwnswapid.1 φAP
tgbtwnswapid.2 φBP
tgbtwnswapid.3 φCP
tgbtwnswapid.4 φABIC
tgbtwnswapid.5 φBAIC
Assertion tgbtwnswapid φA=B

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwnswapid.1 φAP
6 tgbtwnswapid.2 φBP
7 tgbtwnswapid.3 φCP
8 tgbtwnswapid.4 φABIC
9 tgbtwnswapid.5 φBAIC
10 4 ad2antrr φxPxAIAxBIBG𝒢Tarski
11 5 ad2antrr φxPxAIAxBIBAP
12 simplr φxPxAIAxBIBxP
13 simprl φxPxAIAxBIBxAIA
14 1 2 3 10 11 12 13 axtgbtwnid φxPxAIAxBIBA=x
15 6 ad2antrr φxPxAIAxBIBBP
16 simprr φxPxAIAxBIBxBIB
17 1 2 3 10 15 12 16 axtgbtwnid φxPxAIAxBIBB=x
18 14 17 eqtr4d φxPxAIAxBIBA=B
19 1 2 3 4 6 5 7 5 6 8 9 axtgpasch φxPxAIAxBIB
20 18 19 r19.29a φA=B