Metamath Proof Explorer


Theorem axtgpasch

Description: Axiom of (Inner) Pasch, Axiom A7 of Schwabhauser p. 12. Given triangle X Y Z , point U in segment X Z , and point V in segment Y Z , there exists a point a on both the segment U Y and the segment V X . This axiom is essentially a subset of the general Pasch axiom. The general Pasch axiom asserts that on a plane "a line intersecting a triangle in one of its sides, and not intersecting any of the vertices, must intersect one of the other two sides" (per the discussion about Axiom 7 of Tarski1999 p. 179). The (general) Pasch axiom was used implicitly by Euclid, but never stated; Moritz Pasch discovered its omission in 1882. As noted in the Metamath book, this means that the omission of Pasch's axiom from Euclid went unnoticed for 2000 years. Only the inner Pasch algorithm is included as an axiom; the "outer" form of the Pasch axiom can be proved using the inner form (see theorem 9.6 of Schwabhauser p. 69 and the brief discussion in axiom 7.1 of Tarski1999 p. 180). (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses axtrkg.p P=BaseG
axtrkg.d -˙=distG
axtrkg.i I=ItvG
axtrkg.g φG𝒢Tarski
axtgpasch.1 φXP
axtgpasch.2 φYP
axtgpasch.3 φZP
axtgpasch.4 φUP
axtgpasch.5 φVP
axtgpasch.6 φUXIZ
axtgpasch.7 φVYIZ
Assertion axtgpasch φaPaUIYaVIX

Proof

Step Hyp Ref Expression
1 axtrkg.p P=BaseG
2 axtrkg.d -˙=distG
3 axtrkg.i I=ItvG
4 axtrkg.g φG𝒢Tarski
5 axtgpasch.1 φXP
6 axtgpasch.2 φYP
7 axtgpasch.3 φZP
8 axtgpasch.4 φUP
9 axtgpasch.5 φVP
10 axtgpasch.6 φUXIZ
11 axtgpasch.7 φVYIZ
12 df-trkg 𝒢Tarski=𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
13 inss1 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiC𝒢TarskiB
14 inss2 𝒢TarskiC𝒢TarskiB𝒢TarskiB
15 13 14 sstri 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiB
16 12 15 eqsstri 𝒢Tarski𝒢TarskiB
17 16 4 sselid φG𝒢TarskiB
18 1 2 3 istrkgb G𝒢TarskiBGVxPyPyxIxx=yxPyPzPuPvPuxIzvyIzaPauIyavIxs𝒫Pt𝒫PaPxsytxaIybPxsytbxIy
19 18 simprbi G𝒢TarskiBxPyPyxIxx=yxPyPzPuPvPuxIzvyIzaPauIyavIxs𝒫Pt𝒫PaPxsytxaIybPxsytbxIy
20 19 simp2d G𝒢TarskiBxPyPzPuPvPuxIzvyIzaPauIyavIx
21 17 20 syl φxPyPzPuPvPuxIzvyIzaPauIyavIx
22 oveq1 x=XxIz=XIz
23 22 eleq2d x=XuxIzuXIz
24 23 anbi1d x=XuxIzvyIzuXIzvyIz
25 oveq2 x=XvIx=vIX
26 25 eleq2d x=XavIxavIX
27 26 anbi2d x=XauIyavIxauIyavIX
28 27 rexbidv x=XaPauIyavIxaPauIyavIX
29 24 28 imbi12d x=XuxIzvyIzaPauIyavIxuXIzvyIzaPauIyavIX
30 29 2ralbidv x=XuPvPuxIzvyIzaPauIyavIxuPvPuXIzvyIzaPauIyavIX
31 oveq1 y=YyIz=YIz
32 31 eleq2d y=YvyIzvYIz
33 32 anbi2d y=YuXIzvyIzuXIzvYIz
34 oveq2 y=YuIy=uIY
35 34 eleq2d y=YauIyauIY
36 35 anbi1d y=YauIyavIXauIYavIX
37 36 rexbidv y=YaPauIyavIXaPauIYavIX
38 33 37 imbi12d y=YuXIzvyIzaPauIyavIXuXIzvYIzaPauIYavIX
39 38 2ralbidv y=YuPvPuXIzvyIzaPauIyavIXuPvPuXIzvYIzaPauIYavIX
40 oveq2 z=ZXIz=XIZ
41 40 eleq2d z=ZuXIzuXIZ
42 oveq2 z=ZYIz=YIZ
43 42 eleq2d z=ZvYIzvYIZ
44 41 43 anbi12d z=ZuXIzvYIzuXIZvYIZ
45 44 imbi1d z=ZuXIzvYIzaPauIYavIXuXIZvYIZaPauIYavIX
46 45 2ralbidv z=ZuPvPuXIzvYIzaPauIYavIXuPvPuXIZvYIZaPauIYavIX
47 30 39 46 rspc3v XPYPZPxPyPzPuPvPuxIzvyIzaPauIyavIxuPvPuXIZvYIZaPauIYavIX
48 5 6 7 47 syl3anc φxPyPzPuPvPuxIzvyIzaPauIyavIxuPvPuXIZvYIZaPauIYavIX
49 21 48 mpd φuPvPuXIZvYIZaPauIYavIX
50 eleq1 u=UuXIZUXIZ
51 50 anbi1d u=UuXIZvYIZUXIZvYIZ
52 oveq1 u=UuIY=UIY
53 52 eleq2d u=UauIYaUIY
54 53 anbi1d u=UauIYavIXaUIYavIX
55 54 rexbidv u=UaPauIYavIXaPaUIYavIX
56 51 55 imbi12d u=UuXIZvYIZaPauIYavIXUXIZvYIZaPaUIYavIX
57 eleq1 v=VvYIZVYIZ
58 57 anbi2d v=VUXIZvYIZUXIZVYIZ
59 oveq1 v=VvIX=VIX
60 59 eleq2d v=VavIXaVIX
61 60 anbi2d v=VaUIYavIXaUIYaVIX
62 61 rexbidv v=VaPaUIYavIXaPaUIYaVIX
63 58 62 imbi12d v=VUXIZvYIZaPaUIYavIXUXIZVYIZaPaUIYaVIX
64 56 63 rspc2v UPVPuPvPuXIZvYIZaPauIYavIXUXIZVYIZaPaUIYaVIX
65 8 9 64 syl2anc φuPvPuXIZvYIZaPauIYavIXUXIZVYIZaPaUIYaVIX
66 49 65 mpd φUXIZVYIZaPaUIYaVIX
67 10 11 66 mp2and φaPaUIYaVIX