Metamath Proof Explorer


Theorem tgbtwnintr

Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P=BaseG
tkgeom.d -˙=distG
tkgeom.i I=ItvG
tkgeom.g φG𝒢Tarski
tgbtwnintr.1 φAP
tgbtwnintr.2 φBP
tgbtwnintr.3 φCP
tgbtwnintr.4 φDP
tgbtwnintr.5 φABID
tgbtwnintr.6 φBCID
Assertion tgbtwnintr φBAIC

Proof

Step Hyp Ref Expression
1 tkgeom.p P=BaseG
2 tkgeom.d -˙=distG
3 tkgeom.i I=ItvG
4 tkgeom.g φG𝒢Tarski
5 tgbtwnintr.1 φAP
6 tgbtwnintr.2 φBP
7 tgbtwnintr.3 φCP
8 tgbtwnintr.4 φDP
9 tgbtwnintr.5 φABID
10 tgbtwnintr.6 φBCID
11 4 ad2antrr φxPxAICxBIBG𝒢Tarski
12 6 ad2antrr φxPxAICxBIBBP
13 simplr φxPxAICxBIBxP
14 simprr φxPxAICxBIBxBIB
15 1 2 3 11 12 13 14 axtgbtwnid φxPxAICxBIBB=x
16 simprl φxPxAICxBIBxAIC
17 15 16 eqeltrd φxPxAICxBIBBAIC
18 1 2 3 4 6 7 8 5 6 9 10 axtgpasch φxPxAICxBIB
19 17 18 r19.29a φBAIC