Metamath Proof Explorer


Theorem cad11

Description: If (at least) two inputs are true, then the adder carry is true. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion cad11
|- ( ( ph /\ ps ) -> cadd ( ph , ps , ch ) )

Proof

Step Hyp Ref Expression
1 orc
 |-  ( ( ph /\ ps ) -> ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) )
2 df-cad
 |-  ( cadd ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) )
3 1 2 sylibr
 |-  ( ( ph /\ ps ) -> cadd ( ph , ps , ch ) )