Step |
Hyp |
Ref |
Expression |
1 |
|
caovdir.1 |
|- A e. _V |
2 |
|
caovdir.2 |
|- B e. _V |
3 |
|
caovdir.3 |
|- C e. _V |
4 |
|
caovdir.com |
|- ( x G y ) = ( y G x ) |
5 |
|
caovdir.distr |
|- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) |
6 |
|
caovdl.4 |
|- D e. _V |
7 |
|
caovdl.5 |
|- H e. _V |
8 |
|
caovdl.ass |
|- ( ( x G y ) G z ) = ( x G ( y G z ) ) |
9 |
|
ovex |
|- ( A G C ) e. _V |
10 |
|
ovex |
|- ( B G D ) e. _V |
11 |
9 10 7 4 5
|
caovdir |
|- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( ( A G C ) G H ) F ( ( B G D ) G H ) ) |
12 |
1 3 7 8
|
caovass |
|- ( ( A G C ) G H ) = ( A G ( C G H ) ) |
13 |
2 6 7 8
|
caovass |
|- ( ( B G D ) G H ) = ( B G ( D G H ) ) |
14 |
12 13
|
oveq12i |
|- ( ( ( A G C ) G H ) F ( ( B G D ) G H ) ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) |
15 |
11 14
|
eqtri |
|- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) |