| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							carddomi2 | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) -> A ~<_ B ) )  | 
						
						
							| 2 | 
							
								
							 | 
							brdom2 | 
							 |-  ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cardon | 
							 |-  ( card ` A ) e. On  | 
						
						
							| 4 | 
							
								3
							 | 
							onelssi | 
							 |-  ( ( card ` B ) e. ( card ` A ) -> ( card ` B ) C_ ( card ` A ) )  | 
						
						
							| 5 | 
							
								
							 | 
							carddomi2 | 
							 |-  ( ( B e. dom card /\ A e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) -> B ~<_ A ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ancoms | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) -> B ~<_ A ) )  | 
						
						
							| 7 | 
							
								
							 | 
							domnsym | 
							 |-  ( B ~<_ A -> -. A ~< B )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							syl56 | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) e. ( card ` A ) -> -. A ~< B ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							con2d | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A ~< B -> -. ( card ` B ) e. ( card ` A ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cardon | 
							 |-  ( card ` B ) e. On  | 
						
						
							| 11 | 
							
								
							 | 
							ontri1 | 
							 |-  ( ( ( card ` A ) e. On /\ ( card ` B ) e. On ) -> ( ( card ` A ) C_ ( card ` B ) <-> -. ( card ` B ) e. ( card ` A ) ) )  | 
						
						
							| 12 | 
							
								3 10 11
							 | 
							mp2an | 
							 |-  ( ( card ` A ) C_ ( card ` B ) <-> -. ( card ` B ) e. ( card ` A ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							imbitrrdi | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A ~< B -> ( card ` A ) C_ ( card ` B ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							carden2b | 
							 |-  ( A ~~ B -> ( card ` A ) = ( card ` B ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqimss | 
							 |-  ( ( card ` A ) = ( card ` B ) -> ( card ` A ) C_ ( card ` B ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							 |-  ( A ~~ B -> ( card ` A ) C_ ( card ` B ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A ~~ B -> ( card ` A ) C_ ( card ` B ) ) )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							jaod | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( A ~< B \/ A ~~ B ) -> ( card ` A ) C_ ( card ` B ) ) )  | 
						
						
							| 19 | 
							
								2 18
							 | 
							biimtrid | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B -> ( card ` A ) C_ ( card ` B ) ) )  | 
						
						
							| 20 | 
							
								1 19
							 | 
							impbid | 
							 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) )  |