Metamath Proof Explorer


Theorem cbvalvw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017) (Proof shortened by Wolf Lammen, 28-Feb-2018)

Ref Expression
Hypothesis cbvalvw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvalvw
|- ( A. x ph <-> A. y ps )

Proof

Step Hyp Ref Expression
1 cbvalvw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 ax-5
 |-  ( A. x ph -> A. y A. x ph )
3 ax-5
 |-  ( -. ps -> A. x -. ps )
4 ax-5
 |-  ( A. y ps -> A. x A. y ps )
5 ax-5
 |-  ( -. ph -> A. y -. ph )
6 2 3 4 5 1 cbvalw
 |-  ( A. x ph <-> A. y ps )