Metamath Proof Explorer


Theorem cbvriotavw

Description: Change bound variable in a restricted description binder. Version of cbvriotav with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvriotavw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvriotavw
|- ( iota_ x e. A ph ) = ( iota_ y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvriotavw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
3 2 1 anbi12d
 |-  ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. A /\ ps ) ) )
4 3 cbviotavw
 |-  ( iota x ( x e. A /\ ph ) ) = ( iota y ( y e. A /\ ps ) )
5 df-riota
 |-  ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) )
6 df-riota
 |-  ( iota_ y e. A ps ) = ( iota y ( y e. A /\ ps ) )
7 4 5 6 3eqtr4i
 |-  ( iota_ x e. A ph ) = ( iota_ y e. A ps )