Metamath Proof Explorer


Theorem cbvriotavw2

Description: Change bound variable and domain in a restricted description binder, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvriotavw2.1
|- ( x = y -> A = B )
cbvriotavw2.2
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvriotavw2
|- ( iota_ x e. A ph ) = ( iota_ y e. B ps )

Proof

Step Hyp Ref Expression
1 cbvriotavw2.1
 |-  ( x = y -> A = B )
2 cbvriotavw2.2
 |-  ( x = y -> ( ph <-> ps ) )
3 id
 |-  ( x = y -> x = y )
4 3 1 eleq12d
 |-  ( x = y -> ( x e. A <-> y e. B ) )
5 4 2 anbi12d
 |-  ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. B /\ ps ) ) )
6 5 cbviotavw
 |-  ( iota x ( x e. A /\ ph ) ) = ( iota y ( y e. B /\ ps ) )
7 df-riota
 |-  ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) )
8 df-riota
 |-  ( iota_ y e. B ps ) = ( iota y ( y e. B /\ ps ) )
9 6 7 8 3eqtr4i
 |-  ( iota_ x e. A ph ) = ( iota_ y e. B ps )