Step |
Hyp |
Ref |
Expression |
1 |
|
cbvriotavw2.1 |
|- ( x = y -> A = B ) |
2 |
|
cbvriotavw2.2 |
|- ( x = y -> ( ph <-> ps ) ) |
3 |
|
id |
|- ( x = y -> x = y ) |
4 |
3 1
|
eleq12d |
|- ( x = y -> ( x e. A <-> y e. B ) ) |
5 |
4 2
|
anbi12d |
|- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. B /\ ps ) ) ) |
6 |
5
|
cbviotavw |
|- ( iota x ( x e. A /\ ph ) ) = ( iota y ( y e. B /\ ps ) ) |
7 |
|
df-riota |
|- ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) ) |
8 |
|
df-riota |
|- ( iota_ y e. B ps ) = ( iota y ( y e. B /\ ps ) ) |
9 |
6 7 8
|
3eqtr4i |
|- ( iota_ x e. A ph ) = ( iota_ y e. B ps ) |