Description: Change bound variable and domain in a restricted description binder, using implicit substitution. (Contributed by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvriotavw2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| cbvriotavw2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvriotavw2 | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvriotavw2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 2 | cbvriotavw2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 4 | 3 1 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 5 | 4 2 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 6 | 5 | cbviotavw | ⊢ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) |
| 7 | df-riota | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 8 | df-riota | ⊢ ( ℩ 𝑦 ∈ 𝐵 𝜓 ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) | |
| 9 | 6 7 8 | 3eqtr4i | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 𝜓 ) |