Metamath Proof Explorer


Theorem cbvsumvw2

Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvsumvw2.1
|- A = B
cbvsumvw2.2
|- ( j = k -> C = D )
Assertion cbvsumvw2
|- sum_ j e. A C = sum_ k e. B D

Proof

Step Hyp Ref Expression
1 cbvsumvw2.1
 |-  A = B
2 cbvsumvw2.2
 |-  ( j = k -> C = D )
3 2 cbvsumv
 |-  sum_ j e. A C = sum_ k e. A D
4 1 sumeq1i
 |-  sum_ k e. A D = sum_ k e. B D
5 3 4 eqtri
 |-  sum_ j e. A C = sum_ k e. B D