Metamath Proof Explorer


Theorem cbvsumvw2

Description: Change bound variable and the set of integers in a sum, using implicit substitution. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvsumvw2.1 𝐴 = 𝐵
cbvsumvw2.2 ( 𝑗 = 𝑘𝐶 = 𝐷 )
Assertion cbvsumvw2 Σ 𝑗𝐴 𝐶 = Σ 𝑘𝐵 𝐷

Proof

Step Hyp Ref Expression
1 cbvsumvw2.1 𝐴 = 𝐵
2 cbvsumvw2.2 ( 𝑗 = 𝑘𝐶 = 𝐷 )
3 2 cbvsumv Σ 𝑗𝐴 𝐶 = Σ 𝑘𝐴 𝐷
4 1 sumeq1i Σ 𝑘𝐴 𝐷 = Σ 𝑘𝐵 𝐷
5 3 4 eqtri Σ 𝑗𝐴 𝐶 = Σ 𝑘𝐵 𝐷