Metamath Proof Explorer
Description: Change bound variable and the set of integers in a sum, using implicit
substitution. (Contributed by GG, 1-Sep-2025)
|
|
Ref |
Expression |
|
Hypotheses |
cbvsumvw2.1 |
⊢ 𝐴 = 𝐵 |
|
|
cbvsumvw2.2 |
⊢ ( 𝑗 = 𝑘 → 𝐶 = 𝐷 ) |
|
Assertion |
cbvsumvw2 |
⊢ Σ 𝑗 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐷 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cbvsumvw2.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
cbvsumvw2.2 |
⊢ ( 𝑗 = 𝑘 → 𝐶 = 𝐷 ) |
3 |
2
|
cbvsumv |
⊢ Σ 𝑗 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐴 𝐷 |
4 |
1
|
sumeq1i |
⊢ Σ 𝑘 ∈ 𝐴 𝐷 = Σ 𝑘 ∈ 𝐵 𝐷 |
5 |
3 4
|
eqtri |
⊢ Σ 𝑗 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝐵 𝐷 |