Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 10-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme31.o | |- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
|
cdleme31.f | |- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
||
cdleme31.c | |- C = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) |
||
Assertion | cdleme31fv1 | |- ( ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) -> ( F ` X ) = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31.o | |- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
|
2 | cdleme31.f | |- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
|
3 | cdleme31.c | |- C = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) |
|
4 | 1 2 3 | cdleme31fv | |- ( X e. B -> ( F ` X ) = if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) ) |
5 | iftrue | |- ( ( P =/= Q /\ -. X .<_ W ) -> if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) = C ) |
|
6 | 4 5 | sylan9eq | |- ( ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) -> ( F ` X ) = C ) |