| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme31sdn.c |
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
| 2 |
|
cdleme31sdn.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
| 3 |
|
cdleme31sdn.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , C ) |
| 4 |
|
biid |
|- ( s .<_ ( P .\/ Q ) <-> s .<_ ( P .\/ Q ) ) |
| 5 |
2 1
|
cdleme31sc |
|- ( s e. _V -> [_ s / t ]_ D = C ) |
| 6 |
5
|
elv |
|- [_ s / t ]_ D = C |
| 7 |
4 6
|
ifbieq2i |
|- if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D ) = if ( s .<_ ( P .\/ Q ) , I , C ) |
| 8 |
3 7
|
eqtr4i |
|- N = if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D ) |