Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 31-Mar-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme31sdn.c | |- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
|
cdleme31sdn.d | |- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
||
cdleme31sdn.n | |- N = if ( s .<_ ( P .\/ Q ) , I , C ) |
||
Assertion | cdleme31sdnN | |- N = if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31sdn.c | |- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
|
2 | cdleme31sdn.d | |- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
|
3 | cdleme31sdn.n | |- N = if ( s .<_ ( P .\/ Q ) , I , C ) |
|
4 | biid | |- ( s .<_ ( P .\/ Q ) <-> s .<_ ( P .\/ Q ) ) |
|
5 | 2 1 | cdleme31sc | |- ( s e. _V -> [_ s / t ]_ D = C ) |
6 | 5 | elv | |- [_ s / t ]_ D = C |
7 | 4 6 | ifbieq2i | |- if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D ) = if ( s .<_ ( P .\/ Q ) , I , C ) |
8 | 3 7 | eqtr4i | |- N = if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D ) |