Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31se2.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) |
2 |
|
cdleme31se2.y |
|- Y = ( ( P .\/ Q ) ./\ ( [_ S / t ]_ D .\/ ( ( R .\/ S ) ./\ W ) ) ) |
3 |
|
nfcv |
|- F/_ t ( P .\/ Q ) |
4 |
|
nfcv |
|- F/_ t ./\ |
5 |
|
nfcsb1v |
|- F/_ t [_ S / t ]_ D |
6 |
|
nfcv |
|- F/_ t .\/ |
7 |
|
nfcv |
|- F/_ t ( ( R .\/ S ) ./\ W ) |
8 |
5 6 7
|
nfov |
|- F/_ t ( [_ S / t ]_ D .\/ ( ( R .\/ S ) ./\ W ) ) |
9 |
3 4 8
|
nfov |
|- F/_ t ( ( P .\/ Q ) ./\ ( [_ S / t ]_ D .\/ ( ( R .\/ S ) ./\ W ) ) ) |
10 |
9
|
a1i |
|- ( S e. A -> F/_ t ( ( P .\/ Q ) ./\ ( [_ S / t ]_ D .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
11 |
|
csbeq1a |
|- ( t = S -> D = [_ S / t ]_ D ) |
12 |
|
oveq2 |
|- ( t = S -> ( R .\/ t ) = ( R .\/ S ) ) |
13 |
12
|
oveq1d |
|- ( t = S -> ( ( R .\/ t ) ./\ W ) = ( ( R .\/ S ) ./\ W ) ) |
14 |
11 13
|
oveq12d |
|- ( t = S -> ( D .\/ ( ( R .\/ t ) ./\ W ) ) = ( [_ S / t ]_ D .\/ ( ( R .\/ S ) ./\ W ) ) ) |
15 |
14
|
oveq2d |
|- ( t = S -> ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( [_ S / t ]_ D .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
16 |
10 15
|
csbiegf |
|- ( S e. A -> [_ S / t ]_ ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( [_ S / t ]_ D .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
17 |
1
|
csbeq2i |
|- [_ S / t ]_ E = [_ S / t ]_ ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) |
18 |
16 17 2
|
3eqtr4g |
|- ( S e. A -> [_ S / t ]_ E = Y ) |