Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme42.b |
|- B = ( Base ` K ) |
2 |
|
cdleme42.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme42.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme42.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme42.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme42.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme42.v |
|- V = ( ( R .\/ S ) ./\ W ) |
8 |
7
|
oveq2i |
|- ( R .\/ V ) = ( R .\/ ( ( R .\/ S ) ./\ W ) ) |
9 |
1 2 3 4 5 6 7
|
cdleme42a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) = ( R .\/ V ) ) |
10 |
9
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ W ) = ( ( R .\/ V ) ./\ W ) ) |
11 |
10
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( R .\/ ( ( R .\/ V ) ./\ W ) ) ) |
12 |
8 11
|
eqtr2id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ ( ( R .\/ V ) ./\ W ) ) = ( R .\/ V ) ) |