| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme42.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdleme42.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cdleme42.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cdleme42.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
cdleme42.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
cdleme42.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
|
cdleme42.v |
⊢ 𝑉 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
| 8 |
7
|
oveq2i |
⊢ ( 𝑅 ∨ 𝑉 ) = ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) |
| 9 |
1 2 3 4 5 6 7
|
cdleme42a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑅 ∨ 𝑆 ) = ( 𝑅 ∨ 𝑉 ) ) |
| 10 |
9
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) = ( ( 𝑅 ∨ 𝑉 ) ∧ 𝑊 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑉 ) ∧ 𝑊 ) ) ) |
| 12 |
8 11
|
eqtr2id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑅 ∨ ( ( 𝑅 ∨ 𝑉 ) ∧ 𝑊 ) ) = ( 𝑅 ∨ 𝑉 ) ) |