| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme4.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme4.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme4.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme4.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme4.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme4.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme4.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme4.g |
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) |
| 9 |
1 2 3 4 5 6 7 8
|
cdleme5 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ G ) = ( P .\/ Q ) ) |
| 10 |
9
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ G ) ./\ W ) = ( ( P .\/ Q ) ./\ W ) ) |
| 11 |
10 6
|
eqtr4di |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ G ) ./\ W ) = U ) |