Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme4.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme4.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme4.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme4.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme4.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme4.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme4.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme4.g |
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) |
9 |
8
|
oveq2i |
|- ( R .\/ G ) = ( R .\/ ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
10 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
11 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. A ) |
12 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> P e. A ) |
13 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
15 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
16 |
10 12 13 15
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
17 |
10
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
18 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simp3ll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A ) |
20 |
1 2 3 4 5 6 7 14
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) ) |
21 |
18 12 13 19 20
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> F e. ( Base ` K ) ) |
22 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
23 |
10 11 19 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
24 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. H ) |
25 |
14 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
26 |
24 25
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
27 |
14 3
|
latmcl |
|- ( ( K e. Lat /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( R .\/ S ) ./\ W ) e. ( Base ` K ) ) |
28 |
17 23 26 27
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) e. ( Base ` K ) ) |
29 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ ( ( R .\/ S ) ./\ W ) e. ( Base ` K ) ) -> ( F .\/ ( ( R .\/ S ) ./\ W ) ) e. ( Base ` K ) ) |
30 |
17 21 28 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ ( ( R .\/ S ) ./\ W ) ) e. ( Base ` K ) ) |
31 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
32 |
14 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) e. ( Base ` K ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) ) |
33 |
10 11 16 30 31 32
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) ) |
34 |
14 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
35 |
19 34
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. ( Base ` K ) ) |
36 |
14 1 2
|
latlej2 |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( S .\/ ( P .\/ Q ) ) ) |
37 |
17 35 16 36
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) .<_ ( S .\/ ( P .\/ Q ) ) ) |
38 |
14 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
39 |
11 38
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. ( Base ` K ) ) |
40 |
14 2
|
latj12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ F e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( R .\/ ( F .\/ S ) ) = ( F .\/ ( R .\/ S ) ) ) |
41 |
17 39 21 35 40
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( F .\/ S ) ) = ( F .\/ ( R .\/ S ) ) ) |
42 |
1 2 3 4 5 6 14
|
cdleme0aa |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) -> U e. ( Base ` K ) ) |
43 |
18 12 13 42
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> U e. ( Base ` K ) ) |
44 |
14 2
|
latj12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( S .\/ ( R .\/ U ) ) = ( R .\/ ( S .\/ U ) ) ) |
45 |
17 35 39 43 44
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( R .\/ U ) ) = ( R .\/ ( S .\/ U ) ) ) |
46 |
1 2 3 4 5 6
|
cdleme4 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) = ( R .\/ U ) ) |
47 |
46
|
3adant3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) = ( R .\/ U ) ) |
48 |
47
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( P .\/ Q ) ) = ( S .\/ ( R .\/ U ) ) ) |
49 |
14 2
|
latjcom |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( F .\/ S ) = ( S .\/ F ) ) |
50 |
17 21 35 49
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ S ) = ( S .\/ F ) ) |
51 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
52 |
1 2 3 4 5 6 7
|
cdleme1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( S .\/ F ) = ( S .\/ U ) ) |
53 |
18 12 13 51 52
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ F ) = ( S .\/ U ) ) |
54 |
50 53
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ S ) = ( S .\/ U ) ) |
55 |
54
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( F .\/ S ) ) = ( R .\/ ( S .\/ U ) ) ) |
56 |
45 48 55
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( P .\/ Q ) ) = ( R .\/ ( F .\/ S ) ) ) |
57 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> R .<_ ( R .\/ S ) ) |
58 |
10 11 19 57
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( R .\/ S ) ) |
59 |
14 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ R .<_ ( R .\/ S ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( R .\/ W ) ) ) |
60 |
10 11 23 26 58 59
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( R .\/ W ) ) ) |
61 |
|
simp23r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> -. R .<_ W ) |
62 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
63 |
1 2 62 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
64 |
18 11 61 63
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
65 |
64
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ ( R .\/ W ) ) = ( ( R .\/ S ) ./\ ( 1. ` K ) ) ) |
66 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
67 |
10 66
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. OL ) |
68 |
14 3 62
|
olm11 |
|- ( ( K e. OL /\ ( R .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) ) |
69 |
67 23 68
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) ) |
70 |
65 69
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ ( R .\/ W ) ) = ( R .\/ S ) ) |
71 |
60 70
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( R .\/ S ) ) |
72 |
71
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ ( R .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( F .\/ ( R .\/ S ) ) ) |
73 |
41 56 72
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( P .\/ Q ) ) = ( F .\/ ( R .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
74 |
14 2
|
latj12 |
|- ( ( K e. Lat /\ ( F e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( R .\/ S ) ./\ W ) e. ( Base ` K ) ) ) -> ( F .\/ ( R .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
75 |
17 21 39 28 74
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ ( R .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
76 |
73 75
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( P .\/ Q ) ) = ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
77 |
37 76
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) .<_ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
78 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) e. ( Base ` K ) ) -> ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) e. ( Base ` K ) ) |
79 |
17 39 30 78
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) e. ( Base ` K ) ) |
80 |
14 1 3
|
latleeqm1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .<_ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) <-> ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( P .\/ Q ) ) ) |
81 |
17 16 79 80
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) .<_ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) <-> ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( P .\/ Q ) ) ) |
82 |
77 81
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( P .\/ Q ) ) |
83 |
33 82
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( P .\/ Q ) ) |
84 |
9 83
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ G ) = ( P .\/ Q ) ) |