| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme1.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme1.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme1.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme1.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme1.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme1.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme1.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
| 8 |
7
|
oveq2i |
|- ( R .\/ F ) = ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
| 9 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. HL ) |
| 10 |
|
simpr3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. A ) |
| 11 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. Lat ) |
| 13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 14 |
13 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 15 |
10 14
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. ( Base ` K ) ) |
| 16 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. A ) |
| 17 |
13 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 18 |
16 17
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. ( Base ` K ) ) |
| 19 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. A ) |
| 20 |
13 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 21 |
19 20
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. ( Base ` K ) ) |
| 22 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 23 |
12 18 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 24 |
13 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 25 |
24
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> W e. ( Base ` K ) ) |
| 26 |
13 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) |
| 27 |
12 23 25 26
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) |
| 28 |
6 27
|
eqeltrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> U e. ( Base ` K ) ) |
| 29 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 30 |
12 15 28 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 31 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 32 |
12 18 15 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 33 |
13 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
| 34 |
12 32 25 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
| 35 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) |
| 36 |
12 21 34 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) |
| 37 |
13 1 2
|
latlej1 |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> R .<_ ( R .\/ U ) ) |
| 38 |
12 15 28 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R .<_ ( R .\/ U ) ) |
| 39 |
13 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( R .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) /\ R .<_ ( R .\/ U ) ) -> ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) ) |
| 40 |
9 10 30 36 38 39
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) ) |
| 41 |
13 1 2
|
latlej2 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> R .<_ ( P .\/ R ) ) |
| 42 |
12 18 15 41
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R .<_ ( P .\/ R ) ) |
| 43 |
13 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ R .<_ ( P .\/ R ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ ( R .\/ W ) ) ) |
| 44 |
9 10 32 25 42 43
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ ( R .\/ W ) ) ) |
| 45 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 46 |
1 2 45 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
| 47 |
46
|
3ad2antr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
| 48 |
47
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ ( R .\/ W ) ) = ( ( P .\/ R ) ./\ ( 1. ` K ) ) ) |
| 49 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 50 |
49
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. OL ) |
| 51 |
13 3 45
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ R ) e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ ( 1. ` K ) ) = ( P .\/ R ) ) |
| 52 |
50 32 51
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ ( 1. ` K ) ) = ( P .\/ R ) ) |
| 53 |
44 48 52
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( P .\/ R ) ) |
| 54 |
53
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( Q .\/ ( P .\/ R ) ) ) |
| 55 |
13 2
|
latj12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
| 56 |
12 21 15 34 55
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
| 57 |
13 2
|
latj13 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( Q .\/ ( P .\/ R ) ) = ( R .\/ ( P .\/ Q ) ) ) |
| 58 |
12 21 18 15 57
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( P .\/ R ) ) = ( R .\/ ( P .\/ Q ) ) ) |
| 59 |
54 56 58
|
3eqtr3rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( P .\/ Q ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
| 60 |
59
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) ) |
| 61 |
1 2 3 4 5 6
|
cdlemeulpq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) ) |
| 62 |
61
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> U .<_ ( P .\/ Q ) ) |
| 63 |
13 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( U .<_ ( P .\/ Q ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) ) ) |
| 64 |
12 28 23 15 63
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( U .<_ ( P .\/ Q ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) ) ) |
| 65 |
62 64
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) ) |
| 66 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) |
| 67 |
12 15 23 66
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) |
| 68 |
13 1 3
|
latleeqm1 |
|- ( ( K e. Lat /\ ( R .\/ U ) e. ( Base ` K ) /\ ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) -> ( ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) <-> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) ) ) |
| 69 |
12 30 67 68
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) <-> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) ) ) |
| 70 |
65 69
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) ) |
| 71 |
40 60 70
|
3eqtr2rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) = ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) ) |
| 72 |
8 71
|
eqtr4id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) = ( R .\/ U ) ) |