Metamath Proof Explorer


Theorem cdleme1

Description: Part of proof of Lemma E in Crawley p. 113. F represents their f(r). Here we show r \/ f(r) = r \/ u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙=K
cdleme1.j ˙=joinK
cdleme1.m ˙=meetK
cdleme1.a A=AtomsK
cdleme1.h H=LHypK
cdleme1.u U=P˙Q˙W
cdleme1.f F=R˙U˙Q˙P˙R˙W
Assertion cdleme1 KHLWHPAQARA¬R˙WR˙F=R˙U

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙=K
2 cdleme1.j ˙=joinK
3 cdleme1.m ˙=meetK
4 cdleme1.a A=AtomsK
5 cdleme1.h H=LHypK
6 cdleme1.u U=P˙Q˙W
7 cdleme1.f F=R˙U˙Q˙P˙R˙W
8 7 oveq2i R˙F=R˙R˙U˙Q˙P˙R˙W
9 simpll KHLWHPAQARA¬R˙WKHL
10 simpr3l KHLWHPAQARA¬R˙WRA
11 hllat KHLKLat
12 11 ad2antrr KHLWHPAQARA¬R˙WKLat
13 eqid BaseK=BaseK
14 13 4 atbase RARBaseK
15 10 14 syl KHLWHPAQARA¬R˙WRBaseK
16 simpr1 KHLWHPAQARA¬R˙WPA
17 13 4 atbase PAPBaseK
18 16 17 syl KHLWHPAQARA¬R˙WPBaseK
19 simpr2 KHLWHPAQARA¬R˙WQA
20 13 4 atbase QAQBaseK
21 19 20 syl KHLWHPAQARA¬R˙WQBaseK
22 13 2 latjcl KLatPBaseKQBaseKP˙QBaseK
23 12 18 21 22 syl3anc KHLWHPAQARA¬R˙WP˙QBaseK
24 13 5 lhpbase WHWBaseK
25 24 ad2antlr KHLWHPAQARA¬R˙WWBaseK
26 13 3 latmcl KLatP˙QBaseKWBaseKP˙Q˙WBaseK
27 12 23 25 26 syl3anc KHLWHPAQARA¬R˙WP˙Q˙WBaseK
28 6 27 eqeltrid KHLWHPAQARA¬R˙WUBaseK
29 13 2 latjcl KLatRBaseKUBaseKR˙UBaseK
30 12 15 28 29 syl3anc KHLWHPAQARA¬R˙WR˙UBaseK
31 13 2 latjcl KLatPBaseKRBaseKP˙RBaseK
32 12 18 15 31 syl3anc KHLWHPAQARA¬R˙WP˙RBaseK
33 13 3 latmcl KLatP˙RBaseKWBaseKP˙R˙WBaseK
34 12 32 25 33 syl3anc KHLWHPAQARA¬R˙WP˙R˙WBaseK
35 13 2 latjcl KLatQBaseKP˙R˙WBaseKQ˙P˙R˙WBaseK
36 12 21 34 35 syl3anc KHLWHPAQARA¬R˙WQ˙P˙R˙WBaseK
37 13 1 2 latlej1 KLatRBaseKUBaseKR˙R˙U
38 12 15 28 37 syl3anc KHLWHPAQARA¬R˙WR˙R˙U
39 13 1 2 3 4 atmod3i1 KHLRAR˙UBaseKQ˙P˙R˙WBaseKR˙R˙UR˙R˙U˙Q˙P˙R˙W=R˙U˙R˙Q˙P˙R˙W
40 9 10 30 36 38 39 syl131anc KHLWHPAQARA¬R˙WR˙R˙U˙Q˙P˙R˙W=R˙U˙R˙Q˙P˙R˙W
41 13 1 2 latlej2 KLatPBaseKRBaseKR˙P˙R
42 12 18 15 41 syl3anc KHLWHPAQARA¬R˙WR˙P˙R
43 13 1 2 3 4 atmod3i1 KHLRAP˙RBaseKWBaseKR˙P˙RR˙P˙R˙W=P˙R˙R˙W
44 9 10 32 25 42 43 syl131anc KHLWHPAQARA¬R˙WR˙P˙R˙W=P˙R˙R˙W
45 eqid 1.K=1.K
46 1 2 45 4 5 lhpjat2 KHLWHRA¬R˙WR˙W=1.K
47 46 3ad2antr3 KHLWHPAQARA¬R˙WR˙W=1.K
48 47 oveq2d KHLWHPAQARA¬R˙WP˙R˙R˙W=P˙R˙1.K
49 hlol KHLKOL
50 49 ad2antrr KHLWHPAQARA¬R˙WKOL
51 13 3 45 olm11 KOLP˙RBaseKP˙R˙1.K=P˙R
52 50 32 51 syl2anc KHLWHPAQARA¬R˙WP˙R˙1.K=P˙R
53 44 48 52 3eqtrd KHLWHPAQARA¬R˙WR˙P˙R˙W=P˙R
54 53 oveq2d KHLWHPAQARA¬R˙WQ˙R˙P˙R˙W=Q˙P˙R
55 13 2 latj12 KLatQBaseKRBaseKP˙R˙WBaseKQ˙R˙P˙R˙W=R˙Q˙P˙R˙W
56 12 21 15 34 55 syl13anc KHLWHPAQARA¬R˙WQ˙R˙P˙R˙W=R˙Q˙P˙R˙W
57 13 2 latj13 KLatQBaseKPBaseKRBaseKQ˙P˙R=R˙P˙Q
58 12 21 18 15 57 syl13anc KHLWHPAQARA¬R˙WQ˙P˙R=R˙P˙Q
59 54 56 58 3eqtr3rd KHLWHPAQARA¬R˙WR˙P˙Q=R˙Q˙P˙R˙W
60 59 oveq2d KHLWHPAQARA¬R˙WR˙U˙R˙P˙Q=R˙U˙R˙Q˙P˙R˙W
61 1 2 3 4 5 6 cdlemeulpq KHLWHPAQAU˙P˙Q
62 61 3adantr3 KHLWHPAQARA¬R˙WU˙P˙Q
63 13 1 2 latjlej2 KLatUBaseKP˙QBaseKRBaseKU˙P˙QR˙U˙R˙P˙Q
64 12 28 23 15 63 syl13anc KHLWHPAQARA¬R˙WU˙P˙QR˙U˙R˙P˙Q
65 62 64 mpd KHLWHPAQARA¬R˙WR˙U˙R˙P˙Q
66 13 2 latjcl KLatRBaseKP˙QBaseKR˙P˙QBaseK
67 12 15 23 66 syl3anc KHLWHPAQARA¬R˙WR˙P˙QBaseK
68 13 1 3 latleeqm1 KLatR˙UBaseKR˙P˙QBaseKR˙U˙R˙P˙QR˙U˙R˙P˙Q=R˙U
69 12 30 67 68 syl3anc KHLWHPAQARA¬R˙WR˙U˙R˙P˙QR˙U˙R˙P˙Q=R˙U
70 65 69 mpbid KHLWHPAQARA¬R˙WR˙U˙R˙P˙Q=R˙U
71 40 60 70 3eqtr2rd KHLWHPAQARA¬R˙WR˙U=R˙R˙U˙Q˙P˙R˙W
72 8 71 eqtr4id KHLWHPAQARA¬R˙WR˙F=R˙U