Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme1.l |
|
2 |
|
cdleme1.j |
|
3 |
|
cdleme1.m |
|
4 |
|
cdleme1.a |
|
5 |
|
cdleme1.h |
|
6 |
|
cdleme1.u |
|
7 |
|
cdleme1.f |
|
8 |
1 2 3 4 5 6 7
|
cdleme1 |
|
9 |
8
|
oveq1d |
|
10 |
|
simpll |
|
11 |
|
simpr3l |
|
12 |
|
hllat |
|
13 |
12
|
ad2antrr |
|
14 |
|
simpr1 |
|
15 |
|
eqid |
|
16 |
15 4
|
atbase |
|
17 |
14 16
|
syl |
|
18 |
|
simpr2 |
|
19 |
15 4
|
atbase |
|
20 |
18 19
|
syl |
|
21 |
15 2
|
latjcl |
|
22 |
13 17 20 21
|
syl3anc |
|
23 |
15 5
|
lhpbase |
|
24 |
23
|
ad2antlr |
|
25 |
15 3
|
latmcl |
|
26 |
13 22 24 25
|
syl3anc |
|
27 |
6 26
|
eqeltrid |
|
28 |
15 1 3
|
latmle2 |
|
29 |
13 22 24 28
|
syl3anc |
|
30 |
6 29
|
eqbrtrid |
|
31 |
15 1 2 3 4
|
atmod4i2 |
|
32 |
10 11 27 24 30 31
|
syl131anc |
|
33 |
|
eqid |
|
34 |
1 3 33 4 5
|
lhpmat |
|
35 |
34
|
3ad2antr3 |
|
36 |
35
|
oveq1d |
|
37 |
|
hlol |
|
38 |
37
|
ad2antrr |
|
39 |
15 2 33
|
olj02 |
|
40 |
38 27 39
|
syl2anc |
|
41 |
36 40
|
eqtrd |
|
42 |
9 32 41
|
3eqtr2d |
|