Metamath Proof Explorer


Theorem atmod4i2

Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012) (Revised by Mario Carneiro, 10-Mar-2013)

Ref Expression
Hypotheses atmod.b B=BaseK
atmod.l ˙=K
atmod.j ˙=joinK
atmod.m ˙=meetK
atmod.a A=AtomsK
Assertion atmod4i2 KHLPAXBYBX˙YP˙Y˙X=P˙X˙Y

Proof

Step Hyp Ref Expression
1 atmod.b B=BaseK
2 atmod.l ˙=K
3 atmod.j ˙=joinK
4 atmod.m ˙=meetK
5 atmod.a A=AtomsK
6 hllat KHLKLat
7 6 3ad2ant1 KHLPAXBYBX˙YKLat
8 simp21 KHLPAXBYBX˙YPA
9 1 5 atbase PAPB
10 8 9 syl KHLPAXBYBX˙YPB
11 simp23 KHLPAXBYBX˙YYB
12 1 4 latmcl KLatPBYBP˙YB
13 7 10 11 12 syl3anc KHLPAXBYBX˙YP˙YB
14 simp22 KHLPAXBYBX˙YXB
15 1 3 latjcom KLatP˙YBXBP˙Y˙X=X˙P˙Y
16 7 13 14 15 syl3anc KHLPAXBYBX˙YP˙Y˙X=X˙P˙Y
17 1 2 3 4 5 atmod1i2 KHLPAXBYBX˙YX˙P˙Y=X˙P˙Y
18 1 3 latjcom KLatXBPBX˙P=P˙X
19 7 14 10 18 syl3anc KHLPAXBYBX˙YX˙P=P˙X
20 19 oveq1d KHLPAXBYBX˙YX˙P˙Y=P˙X˙Y
21 16 17 20 3eqtrd KHLPAXBYBX˙YP˙Y˙X=P˙X˙Y