Metamath Proof Explorer


Theorem lhpmat

Description: An element covered by the lattice unity, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses lhpmat.l ˙=K
lhpmat.m ˙=meetK
lhpmat.z 0˙=0.K
lhpmat.a A=AtomsK
lhpmat.h H=LHypK
Assertion lhpmat KHLWHPA¬P˙WP˙W=0˙

Proof

Step Hyp Ref Expression
1 lhpmat.l ˙=K
2 lhpmat.m ˙=meetK
3 lhpmat.z 0˙=0.K
4 lhpmat.a A=AtomsK
5 lhpmat.h H=LHypK
6 simprr KHLWHPA¬P˙W¬P˙W
7 hlatl KHLKAtLat
8 7 ad2antrr KHLWHPA¬P˙WKAtLat
9 simprl KHLWHPA¬P˙WPA
10 eqid BaseK=BaseK
11 10 5 lhpbase WHWBaseK
12 11 ad2antlr KHLWHPA¬P˙WWBaseK
13 10 1 2 3 4 atnle KAtLatPAWBaseK¬P˙WP˙W=0˙
14 8 9 12 13 syl3anc KHLWHPA¬P˙W¬P˙WP˙W=0˙
15 6 14 mpbid KHLWHPA¬P˙WP˙W=0˙