Metamath Proof Explorer


Theorem lhpmatb

Description: An element covered by the lattice unit, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013)

Ref Expression
Hypotheses lhpmat.l ˙ = K
lhpmat.m ˙ = meet K
lhpmat.z 0 ˙ = 0. K
lhpmat.a A = Atoms K
lhpmat.h H = LHyp K
Assertion lhpmatb K HL W H P A ¬ P ˙ W P ˙ W = 0 ˙

Proof

Step Hyp Ref Expression
1 lhpmat.l ˙ = K
2 lhpmat.m ˙ = meet K
3 lhpmat.z 0 ˙ = 0. K
4 lhpmat.a A = Atoms K
5 lhpmat.h H = LHyp K
6 1 2 3 4 5 lhpmat K HL W H P A ¬ P ˙ W P ˙ W = 0 ˙
7 6 anassrs K HL W H P A ¬ P ˙ W P ˙ W = 0 ˙
8 hlatl K HL K AtLat
9 8 ad3antrrr K HL W H P A P ˙ W = 0 ˙ K AtLat
10 simplr K HL W H P A P ˙ W = 0 ˙ P A
11 3 4 atn0 K AtLat P A P 0 ˙
12 11 necomd K AtLat P A 0 ˙ P
13 9 10 12 syl2anc K HL W H P A P ˙ W = 0 ˙ 0 ˙ P
14 neeq1 P ˙ W = 0 ˙ P ˙ W P 0 ˙ P
15 14 adantl K HL W H P A P ˙ W = 0 ˙ P ˙ W P 0 ˙ P
16 13 15 mpbird K HL W H P A P ˙ W = 0 ˙ P ˙ W P
17 hllat K HL K Lat
18 17 ad3antrrr K HL W H P A P ˙ W = 0 ˙ K Lat
19 eqid Base K = Base K
20 19 4 atbase P A P Base K
21 10 20 syl K HL W H P A P ˙ W = 0 ˙ P Base K
22 19 5 lhpbase W H W Base K
23 22 ad3antlr K HL W H P A P ˙ W = 0 ˙ W Base K
24 19 1 2 latleeqm1 K Lat P Base K W Base K P ˙ W P ˙ W = P
25 18 21 23 24 syl3anc K HL W H P A P ˙ W = 0 ˙ P ˙ W P ˙ W = P
26 25 necon3bbid K HL W H P A P ˙ W = 0 ˙ ¬ P ˙ W P ˙ W P
27 16 26 mpbird K HL W H P A P ˙ W = 0 ˙ ¬ P ˙ W
28 7 27 impbida K HL W H P A ¬ P ˙ W P ˙ W = 0 ˙