Metamath Proof Explorer


Theorem lhp2at0

Description: Join and meet with different atoms under co-atom W . (Contributed by NM, 15-Jun-2013)

Ref Expression
Hypotheses lhp2at0.l ˙=K
lhp2at0.j ˙=joinK
lhp2at0.m ˙=meetK
lhp2at0.z 0˙=0.K
lhp2at0.a A=AtomsK
lhp2at0.h H=LHypK
Assertion lhp2at0 KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙U˙V=0˙

Proof

Step Hyp Ref Expression
1 lhp2at0.l ˙=K
2 lhp2at0.j ˙=joinK
3 lhp2at0.m ˙=meetK
4 lhp2at0.z 0˙=0.K
5 lhp2at0.a A=AtomsK
6 lhp2at0.h H=LHypK
7 simp11l KHLWHPA¬P˙WUVUAU˙WVAV˙WKHL
8 hlol KHLKOL
9 7 8 syl KHLWHPA¬P˙WUVUAU˙WVAV˙WKOL
10 simp12l KHLWHPA¬P˙WUVUAU˙WVAV˙WPA
11 simp2l KHLWHPA¬P˙WUVUAU˙WVAV˙WUA
12 eqid BaseK=BaseK
13 12 2 5 hlatjcl KHLPAUAP˙UBaseK
14 7 10 11 13 syl3anc KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙UBaseK
15 simp11r KHLWHPA¬P˙WUVUAU˙WVAV˙WWH
16 12 6 lhpbase WHWBaseK
17 15 16 syl KHLWHPA¬P˙WUVUAU˙WVAV˙WWBaseK
18 simp3l KHLWHPA¬P˙WUVUAU˙WVAV˙WVA
19 12 5 atbase VAVBaseK
20 18 19 syl KHLWHPA¬P˙WUVUAU˙WVAV˙WVBaseK
21 12 3 latmassOLD KOLP˙UBaseKWBaseKVBaseKP˙U˙W˙V=P˙U˙W˙V
22 9 14 17 20 21 syl13anc KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙U˙W˙V=P˙U˙W˙V
23 1 3 4 5 6 lhpmat KHLWHPA¬P˙WP˙W=0˙
24 23 3adant3 KHLWHPA¬P˙WUVP˙W=0˙
25 24 3ad2ant1 KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙W=0˙
26 25 oveq1d KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙W˙U=0˙˙U
27 12 5 atbase UAUBaseK
28 11 27 syl KHLWHPA¬P˙WUVUAU˙WVAV˙WUBaseK
29 simp2r KHLWHPA¬P˙WUVUAU˙WVAV˙WU˙W
30 12 1 2 3 5 atmod4i2 KHLPAUBaseKWBaseKU˙WP˙W˙U=P˙U˙W
31 7 10 28 17 29 30 syl131anc KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙W˙U=P˙U˙W
32 12 2 4 olj02 KOLUBaseK0˙˙U=U
33 9 28 32 syl2anc KHLWHPA¬P˙WUVUAU˙WVAV˙W0˙˙U=U
34 26 31 33 3eqtr3d KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙U˙W=U
35 34 oveq1d KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙U˙W˙V=U˙V
36 22 35 eqtr3d KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙U˙W˙V=U˙V
37 simp3r KHLWHPA¬P˙WUVUAU˙WVAV˙WV˙W
38 7 hllatd KHLWHPA¬P˙WUVUAU˙WVAV˙WKLat
39 12 1 3 latleeqm2 KLatVBaseKWBaseKV˙WW˙V=V
40 38 20 17 39 syl3anc KHLWHPA¬P˙WUVUAU˙WVAV˙WV˙WW˙V=V
41 37 40 mpbid KHLWHPA¬P˙WUVUAU˙WVAV˙WW˙V=V
42 41 oveq2d KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙U˙W˙V=P˙U˙V
43 simp13 KHLWHPA¬P˙WUVUAU˙WVAV˙WUV
44 hlatl KHLKAtLat
45 7 44 syl KHLWHPA¬P˙WUVUAU˙WVAV˙WKAtLat
46 3 4 5 atnem0 KAtLatUAVAUVU˙V=0˙
47 45 11 18 46 syl3anc KHLWHPA¬P˙WUVUAU˙WVAV˙WUVU˙V=0˙
48 43 47 mpbid KHLWHPA¬P˙WUVUAU˙WVAV˙WU˙V=0˙
49 36 42 48 3eqtr3d KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙U˙V=0˙