Metamath Proof Explorer


Theorem lhp2atnle

Description: Inequality for 2 different atoms under co-atom W . (Contributed by NM, 17-Jun-2013)

Ref Expression
Hypotheses lhp2atnle.l ˙=K
lhp2atnle.j ˙=joinK
lhp2atnle.a A=AtomsK
lhp2atnle.h H=LHypK
Assertion lhp2atnle KHLWHPA¬P˙WUVUAU˙WVAV˙W¬V˙P˙U

Proof

Step Hyp Ref Expression
1 lhp2atnle.l ˙=K
2 lhp2atnle.j ˙=joinK
3 lhp2atnle.a A=AtomsK
4 lhp2atnle.h H=LHypK
5 simp11l KHLWHPA¬P˙WUVUAU˙WVAV˙WKHL
6 hlatl KHLKAtLat
7 5 6 syl KHLWHPA¬P˙WUVUAU˙WVAV˙WKAtLat
8 simp3l KHLWHPA¬P˙WUVUAU˙WVAV˙WVA
9 eqid 0.K=0.K
10 9 3 atn0 KAtLatVAV0.K
11 7 8 10 syl2anc KHLWHPA¬P˙WUVUAU˙WVAV˙WV0.K
12 5 hllatd KHLWHPA¬P˙WUVUAU˙WVAV˙WKLat
13 eqid BaseK=BaseK
14 13 3 atbase VAVBaseK
15 8 14 syl KHLWHPA¬P˙WUVUAU˙WVAV˙WVBaseK
16 simp12l KHLWHPA¬P˙WUVUAU˙WVAV˙WPA
17 simp2l KHLWHPA¬P˙WUVUAU˙WVAV˙WUA
18 13 2 3 hlatjcl KHLPAUAP˙UBaseK
19 5 16 17 18 syl3anc KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙UBaseK
20 eqid meetK=meetK
21 13 1 20 latleeqm2 KLatVBaseKP˙UBaseKV˙P˙UP˙UmeetKV=V
22 12 15 19 21 syl3anc KHLWHPA¬P˙WUVUAU˙WVAV˙WV˙P˙UP˙UmeetKV=V
23 1 2 20 9 3 4 lhp2at0 KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙UmeetKV=0.K
24 eqeq1 P˙UmeetKV=VP˙UmeetKV=0.KV=0.K
25 23 24 syl5ibcom KHLWHPA¬P˙WUVUAU˙WVAV˙WP˙UmeetKV=VV=0.K
26 22 25 sylbid KHLWHPA¬P˙WUVUAU˙WVAV˙WV˙P˙UV=0.K
27 26 necon3ad KHLWHPA¬P˙WUVUAU˙WVAV˙WV0.K¬V˙P˙U
28 11 27 mpd KHLWHPA¬P˙WUVUAU˙WVAV˙W¬V˙P˙U