Description: Inequality for 2 different atoms under co-atom W . (Contributed by NM, 17-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lhp2atnle.l | |
|
lhp2atnle.j | |
||
lhp2atnle.a | |
||
lhp2atnle.h | |
||
Assertion | lhp2atnle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhp2atnle.l | |
|
2 | lhp2atnle.j | |
|
3 | lhp2atnle.a | |
|
4 | lhp2atnle.h | |
|
5 | simp11l | |
|
6 | hlatl | |
|
7 | 5 6 | syl | |
8 | simp3l | |
|
9 | eqid | |
|
10 | 9 3 | atn0 | |
11 | 7 8 10 | syl2anc | |
12 | 5 | hllatd | |
13 | eqid | |
|
14 | 13 3 | atbase | |
15 | 8 14 | syl | |
16 | simp12l | |
|
17 | simp2l | |
|
18 | 13 2 3 | hlatjcl | |
19 | 5 16 17 18 | syl3anc | |
20 | eqid | |
|
21 | 13 1 20 | latleeqm2 | |
22 | 12 15 19 21 | syl3anc | |
23 | 1 2 20 9 3 4 | lhp2at0 | |
24 | eqeq1 | |
|
25 | 23 24 | syl5ibcom | |
26 | 22 25 | sylbid | |
27 | 26 | necon3ad | |
28 | 11 27 | mpd | |