Metamath Proof Explorer


Theorem latjlej2

Description: Add join to both sides of a lattice ordering. ( chlej2i analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses latlej.b B=BaseK
latlej.l ˙=K
latlej.j ˙=joinK
Assertion latjlej2 KLatXBYBZBX˙YZ˙X˙Z˙Y

Proof

Step Hyp Ref Expression
1 latlej.b B=BaseK
2 latlej.l ˙=K
3 latlej.j ˙=joinK
4 1 2 3 latjlej1 KLatXBYBZBX˙YX˙Z˙Y˙Z
5 1 3 latjcom KLatXBZBX˙Z=Z˙X
6 5 3adant3r2 KLatXBYBZBX˙Z=Z˙X
7 1 3 latjcom KLatYBZBY˙Z=Z˙Y
8 7 3adant3r1 KLatXBYBZBY˙Z=Z˙Y
9 6 8 breq12d KLatXBYBZBX˙Z˙Y˙ZZ˙X˙Z˙Y
10 4 9 sylibd KLatXBYBZBX˙YZ˙X˙Z˙Y