Metamath Proof Explorer


Theorem cdlemeulpq

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 5-Dec-2012)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
Assertion cdlemeulpq KHLWHPAQAU˙P˙Q

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 simpll KHLWHPAQAKHL
8 7 hllatd KHLWHPAQAKLat
9 simprl KHLWHPAQAPA
10 simprr KHLWHPAQAQA
11 eqid BaseK=BaseK
12 11 2 4 hlatjcl KHLPAQAP˙QBaseK
13 7 9 10 12 syl3anc KHLWHPAQAP˙QBaseK
14 11 5 lhpbase WHWBaseK
15 14 ad2antlr KHLWHPAQAWBaseK
16 11 1 3 latmle1 KLatP˙QBaseKWBaseKP˙Q˙W˙P˙Q
17 8 13 15 16 syl3anc KHLWHPAQAP˙Q˙W˙P˙Q
18 6 17 eqbrtrid KHLWHPAQAU˙P˙Q