| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme0.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme0.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme0.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme0.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme0.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme0.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> K e. HL ) |
| 8 |
7
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> K e. Lat ) |
| 9 |
|
simprl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> P e. A ) |
| 10 |
|
simprr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> Q e. A ) |
| 11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 12 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 13 |
7 9 10 12
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 14 |
11 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 15 |
14
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> W e. ( Base ` K ) ) |
| 16 |
11 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ ( P .\/ Q ) ) |
| 17 |
8 13 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ ( P .\/ Q ) ) |
| 18 |
6 17
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) ) |