Metamath Proof Explorer


Theorem olm11

Description: The meet of an ortholattice element with one equals itself. ( chm1i analog.) (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses olm1.b B = Base K
olm1.m ˙ = meet K
olm1.u 1 ˙ = 1. K
Assertion olm11 K OL X B X ˙ 1 ˙ = X

Proof

Step Hyp Ref Expression
1 olm1.b B = Base K
2 olm1.m ˙ = meet K
3 olm1.u 1 ˙ = 1. K
4 olop K OL K OP
5 4 adantr K OL X B K OP
6 eqid 0. K = 0. K
7 eqid oc K = oc K
8 6 3 7 opoc1 K OP oc K 1 ˙ = 0. K
9 5 8 syl K OL X B oc K 1 ˙ = 0. K
10 9 oveq2d K OL X B oc K X join K oc K 1 ˙ = oc K X join K 0. K
11 1 7 opoccl K OP X B oc K X B
12 4 11 sylan K OL X B oc K X B
13 eqid join K = join K
14 1 13 6 olj01 K OL oc K X B oc K X join K 0. K = oc K X
15 12 14 syldan K OL X B oc K X join K 0. K = oc K X
16 10 15 eqtrd K OL X B oc K X join K oc K 1 ˙ = oc K X
17 16 fveq2d K OL X B oc K oc K X join K oc K 1 ˙ = oc K oc K X
18 1 3 op1cl K OP 1 ˙ B
19 5 18 syl K OL X B 1 ˙ B
20 1 13 2 7 oldmj4 K OL X B 1 ˙ B oc K oc K X join K oc K 1 ˙ = X ˙ 1 ˙
21 19 20 mpd3an3 K OL X B oc K oc K X join K oc K 1 ˙ = X ˙ 1 ˙
22 1 7 opococ K OP X B oc K oc K X = X
23 4 22 sylan K OL X B oc K oc K X = X
24 17 21 23 3eqtr3d K OL X B X ˙ 1 ˙ = X